Genetic‐Genomic Replication to Identify Candidate Mouse Atherosclerosis Modifier Genes
نویسندگان
چکیده
OBJECTIVE Genetics plays a large role in atherosclerosis susceptibility in humans and mice. We attempted to confirm previously determined mouse atherosclerosis-associated loci and use bioinformatics and transcriptomics to create a catalog of candidate atherosclerosis modifier genes at these loci. METHODS AND RESULTS A strain intercross was performed between AKR and DBA/2 mice on the apoE(-/-) background generating 166 F2 progeny. Using the phenotype log10 of the aortic root lesion area, we identified 3 suggestive atherosclerosis quantitative trait loci (Ath QTLs). When combined with our prior strain intercross, we confirmed 3 significant Ath QTLs on chromosomes 2, 15, and 17, with combined logarithm of odds scores of 5.9, 5.3, and 5.6, respectively, which each met the genome-wide 5% false discovery rate threshold. We identified all of the protein coding differences between these 2 mouse strains within the Ath QTL intervals. Microarray gene expression profiling was performed on macrophages and endothelial cells from this intercross to identify expression QTLs (eQTLs), the loci that are associated with variation in the expression levels of specific transcripts. Cross tissue eQTLs and macrophage eQTLs that replicated from a prior strain intercross were identified. These bioinformatic and eQTL analyses produced a comprehensive list of candidate genes that may be responsible for the Ath QTLs. CONCLUSIONS Replication studies for clinical traits as well as gene expression traits are worthwhile in identifying true versus false genetic associations. We have replicated 3 loci on mouse chromosomes 2, 15, and 17 that are associated with atherosclerosis. We have also identified protein coding differences and multiple replicated eQTLs, which may be useful in the identification of atherosclerosis modifier genes.
منابع مشابه
High-Resolution Genetic Mapping in the Diversity Outbred Mouse Population Identifies Apobec1 as a Candidate Gene for Atherosclerosis
Inbred mice exhibit strain-specific variation in susceptibility to atherosclerosis and dyslipidemia that renders them useful in dissecting the genetic architecture of these complex diseases. Traditional quantitative trait locus (QTL) mapping studies using inbred strains often identify large genomic regions, containing many genes, due to limited recombination and/or sample size. This hampers can...
متن کاملMULTIPARENTAL POPULATIONS High-Resolution Genetic Mapping in the Diversity Outbred Mouse Population Identifies Apobec1 as a Candidate Gene for Atherosclerosis
Inbred mice exhibit strain-specific variation in susceptibility to atherosclerosis and dyslipidemia that renders them useful in dissecting the genetic architecture of these complex diseases. Traditional quantitative trait locus (QTL) mapping studies using inbred strains often identify large genomic regions, containing many genes, due to limited recombination and/or sample size. This hampers can...
متن کاملGenetic Modifiers for Neuromuscular Diseases.
Neuromuscular diseases, which encompass disorders that affect muscle and its innervation, are highly heritable. Genetic diagnosis now frequently pinpoints the primary mutation responsible for a given neuromuscular disease. However, the results from genetic testing indicate that neuromuscular disease phenotypes may vary widely, even in individuals with the same primary disease-causing mutation. ...
متن کامل10 Years of Mouse Cancer Modifier Loci : Human Relevance 1
About 10 years have elapsed since the first whole-genome scanning studies in the mouse to identify loci that affect susceptibility or resistance to tumorigenesis. In that time, >100 cancer modifiers have been mapped, and four strong candidate genes have been identified. Cancer modifier loci affect almost all types of mouse tumorigenesis, with some loci acting on the entire tumorigenic process, ...
متن کامل10 years of mouse cancer modifier loci: human relevance.
About 10 years have elapsed since the first whole-genome scanning studies in the mouse to identify loci that affect susceptibility or resistance to tumorigenesis. In that time, >100 cancer modifiers have been mapped, and four strong candidate genes have been identified. Cancer modifier loci affect almost all types of mouse tumorigenesis, with some loci acting on the entire tumorigenic process, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013